
Hindawi Publishing Corporation
Computational and Mathematical Methods in Medicine
Volume 2013, Article ID 395071, 15 pages
http://dx.doi.org/10.1155/2013/395071

Research Article
White Blood Cell Segmentation by Circle Detection Using
Electromagnetism-Like Optimization

Erik Cuevas,1 Diego Oliva,2 Margarita Díaz,1 Daniel Zaldivar,1

Marco Pérez-Cisneros,1 and Gonzalo Pajares2

1 Departamento de Electrónica, Universidad de Guadalajara, CUCEI, Avenida Revolución 1500, 44430 Guadalajara, JAL, Mexico
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Medical imaging is a relevant field of application of image processing algorithms. In particular, the analysis of white blood cell
(WBC) images has engaged researchers from fields of medicine and computer vision alike. Since WBCs can be approximated by a
quasicircular form, a circular detector algorithm may be successfully applied. This paper presents an algorithm for the automatic
detection of white blood cells embedded into complicated and cluttered smear images that considers the complete process as a circle
detection problem. The approach is based on a nature-inspired technique called the electromagnetism-like optimization (EMO)
algorithm which is a heuristic method that follows electromagnetism principles for solving complex optimization problems. The
proposed approach uses an objective function which measures the resemblance of a candidate circle to an actual WBC. Guided
by the values of such objective function, the set of encoded candidate circles are evolved by using EMO, so that they can fit into
the actual blood cells contained in the edge map of the image. Experimental results from blood cell images with a varying range of
complexity are included to validate the efficiency of the proposed technique regarding detection, robustness, and stability.

1. Introduction

Nature-inspired computing is a field of research that is
concerned with both the use of biology as an inspiration
for solving computational problems and the use of the
natural physical phenomena to solve real world problems.
Moreover, nature-inspired computing has proved to be useful
in several application areas [1] with relevant contributions
to optimization, pattern recognition, shape detection, and
machine learning. In particular, it has gained considerable
research interest from the computer vision community as
nature-based algorithms have successfully contributed to
solve challenging computer vision problems.

On the other hand, white blood cells (WBCs) also known
as leukocytes play a significant role in the diagnosis of dif-
ferent diseases. Although digital image processing techniques
have successfully contributed to generate new methods for
cell analysis, which, in turn, have lead into more accurate
and reliable systems for disease diagnosis, however, high vari-
ability on cell shape, size, edge, and localization complicates

the data extraction process. Moreover, the contrast between
cell boundaries and the image’s background may vary due to
unstable lighting conditions during the capturing process.

Many works have been conducted in the area of blood
cell detection. In [2], a method based on boundary support
vectors is proposed to identify WBC. In such approach, the
intensity of each pixel is used to construct feature vectors
whereas a support vector machine (SVM) is used for classi-
fication and segmentation. By using a different approach, in
[3],Wu et al. developed an iterativeOtsumethod based on the
circular histogram for leukocyte segmentation. According to
such technique, the smear images are processed in the Hue-
Saturation-Intensity (HSI) space by considering that the Hue
component contains most of the WBC information. One of
the latest advances in white blood cell detection research is
the algorithm proposed by Wang et al. [4] which is based
on the fuzzy cellular neural network (FCNN). Although such
method has proved successful in detecting only one leukocyte
in the image, it has not been tested over images containing
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several white cells. Moreover, its performance commonly
decays when the iteration number is not properly defined,
yielding a challenging problem itself with no clear clues on
how to make the best choice.

Since blood cells can be approximated with a quasi-
circular form, a circular detector algorithm may be handy.
The problem of detecting circular features holds paramount
importance for image analysis, in particular for medical
image analysis [5]. The circle detection in digital images is
commonly performed by the circular Hough transform [6].
A typical Hough-based approach employs an edge detector
whose information guides the inference for circle locations
and radius values. Peak detection is then performed by
averaging, filtering, and histogramming the transform space.
However, such approach requires a large storage space given
by the required 3D cells to cover all parameters (𝑥, 𝑦, 𝑟). It
also implies a high computational complexity yielding a low
processing speed. The accuracy of the extracted parameters
for the detected circle is poor, particularly in presence of
noise [7]. For a digital image holding a significant width
and height and a densely populated edge pixel map, the
required processing time for circularHough transformmakes
it prohibitive to be deployed in real time applications. In order
to overcome such a problem, some other researchers have
proposed new approaches based on the Hough transform,
for instance the probabilistic Hough transform [8, 9], the
randomized Hough transform (RHT) [10] and the fuzzy
Hough transform [11]. Alternative transformations have also
been presented in the literature as the one proposed by Becker
et al. in [12]. Although those new approaches demonstrated
better processing speeds in comparison to the originalHough
transform, they are still very sensitive to noise.

As an alternative to Hough transform-based techniques,
the circle detection problem has also been handled through
optimization methods. In general, they have demonstrated
to deliver better results than those based on HT consider-
ing accuracy, speed, and robustness [13]. Such approaches
have produced several robust circle detectors using different
optimization algorithms such as genetic algorithms (GAs)
[13], harmony search (HS) [14], differential evolution (DE)
[15], and the electromagnetism-like optimization algorithm
(EMO) [16].

Although detection algorithms based on the optimiza-
tion approaches present several advantages in comparison
to those based on the Hough transform, they have been
scarcely applied toWBCdetection. One exception is thework
presented by Karkavitsas and Rangoussi [17] that solves the
WBC detection problem through the use of GA. However,
since the evaluation function, which assesses the quality
of each solution, considers the number of pixels contained
inside of a circle with fixed radius, the method is prone to
produce misdetections particularly for images that contained
overlapped or irregular WBC.

In this paper, the WBC detection task is approached
as an optimization problem, and the EMO-based circle
detector [16] is used to build the circular approximation.
The EMO algorithm [18] is a stochastic evolutionary com-
putation technique based on the electromagnetism theory. It
considers each solution to be a charged particle. The charge

of each particle is determined by an objective function.
Thereby, EMO moves each particle according to its charge
within an attraction or repulsion field among the popula-
tion using Coulomb’s law and the superposition principle.
This attraction-repulsion mechanism of the EMO algorithm
corresponds to the reproduction, crossover, and mutation in
GA [19]. In general, the EMO algorithm can be considered
as a fast and robust algorithm representing an alternative to
solve complex, nonlinear, nondifferentiable and nonconvex
optimization problems.The principal advantages of the EMO
algorithm lie on several facts: it has no gradient operation, it
can be used directly on a decimal system, it needs only few
particles to converge, and the convergence existence has been
already verified [20].

TheEMO-based circle detector uses the encoding of three
edge points that represent candidate circles in the edge map
of the scene. The quality of each individual is calculated by
using an objective function which evaluates if such candidate
circles are really present in the edge map of the image. The
better a candidate circle approximates the actual edge circle,
the more the objective function value decreases. Therefore,
the detection performance depends on the quality of the edge
map as it is obtained from the original images. However,
since smear images present different imaging conditions
and staining intensities, they produce edge maps partially
damaged by noisy pixels. Under such conditions, the use of
the EMO-based circle detector cannot be directly applied to
WBC detection.

This paper presents an algorithm for the automatic detec-
tion of blood cell images based on the EMO algorithm. The
proposedmethodmodifies the EMO-based circle detector by
incorporating a new objective function. Such function allows
to accurately measure the resemblance of a candidate circle
with an actualWBCon the imagewhich is based on the infor-
mation not only from the edgemap but also from the segmen-
tation results. Guided by the values of the new objective func-
tion, the set of encoded candidate circles are evolved using the
EMO algorithm so that they can fit into actual WBC on the
image.The approach generates a subpixel detector which can
effectively identify leukocytes in real images. Experimental
evidence shows the effectiveness of such method in detecting
leukocytes despite complex conditions. Comparison to the
state-of-the-art WBC detectors on multiple images demon-
strates a better performance of the proposed method.

The main contribution of this study is the proposal of
a new WBC detector algorithm that efficiently recognizes
WBC under different complex conditions while considering
the whole process as a circle detection problem. Although
circle detectors based on optimization present several inter-
esting properties, to the best of our knowledge, they have
not yet been applied to any medical image processing up to
date.

This paper is organized as follows. Section 2 provides a
description of the EMO algorithm while in Section 3 the
circle detection task is fully explained from an optimization
perspective within the context of the EMO approach. The
complete WBC detector is presented in Section 4. Section 5
reports the obtained experimental results whereas Section 6
conducts a comparison between the state-of-the-art WBC
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(1) Input parameters: the maximum number of iterationsMAXITER, the values for the local
search parameters such as 𝐼

𝑙
and 𝛿, and the size𝑁 of the population are all defined.

(2) Initialize: set the iteration counter 𝑘 = 1, initialize the members of 𝑆𝑘 uniformly in𝑋,
and identify the best point in 𝑆𝑘.

(3) while 𝑘 < 𝑀𝐴𝑋𝐼𝑇𝐸𝑅 do
(4) 𝐹𝑘
𝑖
← Calc𝐹(𝑆𝑘)

(5) 𝑦𝑖,𝑘 = Move (𝑥𝑖,𝑘, 𝐹
𝑘

𝑖
)

(6) 𝑧𝑖,𝑘= Local (𝐼𝑙, 𝛿, 𝑦𝑖,𝑘)
(7) 𝑥𝑖,𝑘+1 = Select (𝑆𝑘+1, 𝑦𝑖,𝑘, 𝑧𝑖,𝑘)
(8) End while

Algorithm 1: [EMO (𝑁,𝑀𝐴𝑋𝐼𝑇𝐸𝑅, 𝐼𝑙, 𝛿)].

detectors and the proposed approach. Finally, in Section 7,
some conclusions are drawn.

2. Electromagnetism-Like Optimization
Algorithm (EMO)

Initially designed for bound constrained optimization prob-
lems, the EMOmethod [18] utilizes𝑁, 𝑛-dimensional points
𝑥𝑖,𝑘, 𝑖 = 1, 2, . . . , 𝑁, as a population for searching the feasible
set 𝑋 = {𝑥 ∈ 𝑅𝑛 | 𝑙𝑖 ≤ 𝑥 ≤ 𝑢𝑖}, where the index 𝑘 denotes the
iteration (or generation) number of the algorithm while the
lower and upper parameter limits are represented by 𝑙𝑖 and 𝑢𝑖,
respectively. The initial population, 𝑆𝑘 = {𝑥1,𝑘, 𝑥2,𝑘, . . . , 𝑥𝑁,𝑘}

(being 𝑘 = 1), is taken from uniformly distributed samples
of the search region 𝑋. We also denote the population set at
the 𝑘th iteration by 𝑆𝑘. It does contain the members of the
set 𝑆𝑘 that have changed with 𝑘. After the initialization of 𝑆𝑘,
EMOcontinues its iterative process until a stopping condition
(e.g., themaximumnumber of iterations) is met. An iteration
of EMO consists of two steps. In the first step, each point
in 𝑆𝑘 moves to a different location by using the attraction-
repulsion mechanism of the electromagnetism theory [21].
In the second step, points that have been moved by the
electromagnetism theory are further moved locally by a local
search and then become the members of 𝑆𝑘+1 in the (𝑘 + 1)th
iteration. Both the attraction-repulsion mechanism and the
local search in EMO are responsible for driving themembers,
𝑥𝑖,𝑘, of 𝑆𝑘 to the close proximity of the global minimizer.

Similar to the electromagnetism theory for charged par-
ticles, each point 𝑥𝑖,𝑘 ∈ 𝑆𝑘 in the search space𝑋 is assumed to
be a charged particle where the charge of a point relates to its
objective function value. Points holding better objective func-
tion values possess higher EMO charges than other points.

The attraction-repulsion mechanism in EMO states that
points holding more charge attract other points in 𝑆𝑘, while
points showing less charge repel other points. Finally, a total
force vector, 𝐹𝑘

𝑖
, exerted over a point, for example, the 𝑖th

point 𝑥𝑖,𝑘, is calculated by adding the resultant attraction-
repulsion forces, and each 𝑥𝑖,𝑘 ∈ 𝑆𝑘 is moved in the direction
of its total force, denoting its location by 𝑦𝑖,𝑘.

A local search is used to explore the neighborhood of each
𝑦𝑖,𝑘. Considering a determined number of steps, known as 𝐼𝑙,
and a fixed neighbourhood search 𝛿, the procedure iterates
as follows. Point 𝑦𝑖,𝑘 is assigned to a temporary point 𝑧𝑖,𝑘 to

store the initial information. Next, for a given coordinate 𝑖 (∈
1, . . . , 𝑛), a random number is selected and combined with 𝛿

as a step length, which in turns moves the point 𝑧𝑖,𝑘 along the
direction 𝑑. If point 𝑧𝑖,𝑘 observes a better performance within
a set of 𝐼𝑙 repetitions, point 𝑦𝑖,𝑘 is replaced by 𝑧𝑖,𝑘; otherwise
𝑦𝑖,𝑘 is held. Therefore, the members, 𝑥𝑖,𝑘+1 ∈ 𝑆𝑘+1, of the (𝑘 +
1)th iteration are defined through the following equation:

𝑥𝑖,𝑘+1 = {
𝑧𝑖,𝑘, if 𝑓 (𝑧𝑖,𝑘) < 𝑓 (𝑦𝑖,𝑘) ,

𝑦𝑖,𝑘, otherwise.
(1)

Algorithm 1 shows the general scheme of EMO. We also
provide the description of each step as follows.

Input Parameter Values (Line 1). The EMO algorithm is run
for MAXITER iterations. In the local search phase, 𝑛 × 𝐼𝑙 is
the maximum number of locations 𝑧𝑖,𝑘, within a 𝛿 distance of
𝑦𝑖,𝑘, for each 𝑖.

Initialize (Line 2). The points 𝑥𝑖,𝑘, 𝑘 = 1, are selected
uniformly distributed in𝑋, considering lower 𝑙𝑖 and upper 𝑢𝑖
parameter limits, where 𝑖 = 1, 2, . . . , 𝑛.The objective function
values 𝑓(𝑥𝑖,𝑘) are computed, and the best point

𝑥
𝐵

𝑘
= arg min

𝑥𝑖,𝑘∈𝑆
𝑘

{𝑓 (𝑥𝑖,𝑘)} (2)

is also identified.

Calculate Force (Line 4). In this step, a charged-like value
(𝑞𝑖,𝑘) is assigned to each point (𝑥𝑖,𝑘). The charge 𝑞𝑖,𝑘 of 𝑥𝑖,𝑘
is dependent on 𝑓(𝑥𝑖,𝑘), and points holding better objective
function have more charge than others. The charges are
computed as follows:

𝑞𝑖,𝑘 = exp(−𝑛
𝑓 (𝑥𝑖,𝑘) − 𝑓 (𝑥𝐵

𝑘
)

∑
𝑁

𝑗=1
𝑓 (𝑥𝑗,𝑘) − 𝑓 (𝑥𝐵

𝑘
)
) , (3)

where 𝑥𝐵
𝑘
represents the best particle in the population (see

(2)). Then, the force, 𝐹𝑘
𝑖,𝑗
, between two points, 𝑥𝑖,𝑘 and 𝑥𝑗,𝑘, is

calculated by using

𝐹
𝑘

𝑖,𝑗
=

{{{{{

{{{{{

{

(𝑥𝑗,𝑘 − 𝑥𝑖,𝑘)
𝑞𝑖,𝑘 ⋅ 𝑞𝑗,𝑘


𝑥𝑗,𝑘 − 𝑥𝑖,𝑘



2
if 𝑓 (𝑥𝑖,𝑘) > 𝑓 (𝑥𝑗,𝑘) ,

(𝑥𝑖,𝑘 − 𝑥𝑗,𝑘)
𝑞𝑖,𝑘 ⋅ 𝑞𝑗,𝑘


𝑥𝑗,𝑘 − 𝑥𝑖,𝑘



2
if 𝑓 (𝑥𝑖,𝑘) ≤ 𝑓 (𝑥𝑗,𝑘) .

(4)
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The total force, 𝐹𝑘
𝑖
, corresponding to 𝑥𝑖,𝑘 is now calculated as

𝐹
𝑘

𝑖
=

𝑁

∑
𝑗=1,𝑗 ̸= 𝑖

𝐹
𝑘

𝑖,𝑗
. (5)

Moving Point 𝑥𝑖,𝑘 along 𝐹𝑘
𝑖
(Line 5). In this step, each point

𝑥𝑖,𝑘, except for 𝑥
𝐵

𝑘
, is moved along the total force vector 𝐹𝑘

𝑖
by

considering

𝑥𝑖,𝑘 = 𝑥𝑖,𝑘 + 𝜆
𝐹
𝑘

𝑖

𝐹
𝑘

𝑖


(RNG) , 𝑖 = 1, 2, . . . , 𝑁; 𝑖 ̸= 𝐵, (6)

where 𝜆 is a random number between 0 and 1, and RNG
denotes the allowed range of movement towards the lower 𝑙𝑖
or upper 𝑢𝑖 bound for the corresponding dimension.

Local Search (Line 6). For each 𝑦𝑖,𝑘, a maximum of 𝐼𝑙
points are generated at each coordinate direction in 𝛿, the
neighborhood of 𝑦𝑖,𝑘. The process of generating local points
is continued for each 𝑦𝑖,𝑘 until either a better 𝑧𝑖,𝑘 is found or
the 𝐼𝑙 trial is reached.

Selection for the Next Iteration (Line 7). In this step, members
𝑥𝑖,𝑘+1 ∈ 𝑆𝑘+1 are selected from 𝑦𝑖,𝑘 and 𝑧𝑖,𝑘 using (1) and the
best point is identified using (2).

3. Circle Detection Using EMO

3.1. Data Preprocessing. In order to detect circle shapes,
candidate images must be preprocessed first by the well-
known Canny algorithm which yields a single-pixel edge-
only image. Then, the (𝑥𝑖, 𝑦𝑖) coordinates for each edge pixel
𝑝𝑖 are stored inside the edge vector𝑃 = {𝑝1, 𝑝2, . . . , 𝑝𝑁𝑝}, with
𝑁𝑝 being the total number of edge pixels.

3.2. Particle Representation. In order to construct each par-
ticle 𝐶 (circle candidate), the indexes 𝑒1, 𝑒2, and 𝑒3, which
represent three edge points previously stored inside the vector
𝑃, must be grouped assuming that the circle’s contour con-
nects them. Therefore, the circle 𝐶 = {𝑝𝑒1 , 𝑝𝑒2 , 𝑝𝑒3} passing
over such points may be considered as a potential solution
for the detection problem. Considering the configuration of
the edge points shown in Figure 1, the circle center (𝑥0, 𝑦0)
and the radius 𝑟 of 𝐶 can be characterized as follows:

(𝑥 − 𝑥0)
2
+ (𝑦 − 𝑦0)

2
= 𝑟
2
, (7)

where 𝑥0 and 𝑦0 are computed through the following equa-
tions:

𝑥0 =
det (A)

4 ((𝑥𝑒2 − 𝑥𝑒1) (𝑦𝑒3 − 𝑦𝑒1) − (𝑥𝑒3 − 𝑥𝑒1) (𝑦𝑒2 − 𝑦𝑒1))
,

𝑦0 =
det (B)

4 ((𝑥𝑒2 − 𝑥𝑒1) (𝑦𝑒3 − 𝑦𝑒1) − (𝑥𝑒3 − 𝑥𝑒1) (𝑦𝑒2 − 𝑦𝑒1))
,

(8)

Figure 1: Circle candidate (charged particle) built from the combi-
nation of points 𝑝𝑒1 ,𝑝𝑒2 , and 𝑝𝑒3 .

with det(A) anddet(B) representing determinants ofmatrices
A and B; respectively; considering:

A = [
𝑥2
𝑒2
+ 𝑦2
𝑒2
− (𝑥2
𝑒1
+ 𝑦2
𝑒1
) 2 ⋅ (𝑦𝑒1 − 𝑦𝑒1)

𝑥2
𝑒3
+ 𝑦2
𝑒3
− (𝑥2
𝑒1
+ 𝑦2
𝑒1
) 2 ⋅ (𝑦𝑒3 − 𝑦𝑒1)

] ,

B = [
2 ⋅ (𝑥𝑒2 − 𝑥𝑒1) 𝑥2

𝑒2
+ 𝑦2
𝑒2
− (𝑥2
𝑒1
+ 𝑦2
𝑒1
)

2 ⋅ (𝑥𝑒3 − 𝑥𝑒1) 𝑥2
𝑒3
+ 𝑦2
𝑒3
− (𝑥2
𝑒1
+ 𝑦2
𝑒1
)
] ,

(9)

the radius 𝑟 can therefore be calculated using

𝑟 = √(𝑥0 − 𝑥𝑒𝑑)
2

+ (𝑦0 − 𝑦𝑒𝑑)
2

, (10)

where 𝑑 ∈ {1, 2, 3}, and (𝑥𝑒𝑑 , 𝑦𝑒𝑑) are the coordinates of
any of the three selected points which define the particle
𝐶. Figure 1 illustrates main parameters defined by (7)–(10).
Therefore, the shaping parameters for the circle [𝑥0,𝑦0, 𝑟]
can be represented as a transformation 𝑇 of the edge vector
indexes 𝑒1, 𝑒2, and 𝑒3:

[𝑥0, 𝑦0, 𝑟] = 𝑇 (𝑒1, 𝑒2, 𝑒3) . (11)

By exploring each index as a particle, it is possible to sweep
the continuous space while looking for shape parameters by
means of the EMO algorithm. This approach reduces the
search space by eliminating unfeasible solutions.

3.3. Objective Function. In order to model the fitness func-
tion, the circumference coordinates of the circle candidate
𝐶 are calculated as a virtual shape which, in turn, must be
validated, that is, if it really exists in the edge image. The
circumference coordinates are grouped within the test set
𝐻 = {ℎ1, ℎ2, . . . , ℎ𝑁𝑠}, with 𝑁𝑠 representing the number
of points over which the existence of an edge point, which
corresponds to 𝐶, must be verified.

The test 𝐻 is generated by the midpoint circle algorithm
(MCA) [22] which is a well-known algorithm to determine
the required points for drawing a circle. MCA requires
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as inputs only the radius 𝑟 and the center point (𝑥0, 𝑦0)

considering only the first octant over the circle equation 𝑥2 +

𝑦2 = 𝑟2. It draws a curve starting at point (𝑟, 0) and proceeds
upwards left by using integer additions and subtractions.
The MCA aims to calculate the required points 𝐻 in order
to represent a circle candidate. Although the algorithm is
considered as the quickest providing a subpixel precision, it is
important to assure that points lying outside the image plane
must not be considered in𝐻.

The objective function 𝐽(𝐶) represents thematching error
produced between the pixels 𝐻 of the circle candidate 𝐶

(particle) and the pixels that actually exist in the edge-only
image, yielding

𝐽 (𝐶) = 1 −
∑
𝑁𝑠

𝑣=1
𝐸 (ℎ𝑣)

𝑁𝑠
, (12)

where 𝐸(ℎ𝑣) is a function that verifies the pixel existence in
ℎ𝑣, where ℎ𝑣 ∈ 𝐻 and 𝑁𝑠 is the number of elements of 𝐻.
Hence the function 𝐸(ℎ𝑣) is defined as

𝐸 (ℎ𝑣) = {
1, if the test pixel ℎ𝑣 is an edge point,
0, otherwise.

(13)

A value of 𝐽(𝐶) near to zero implies a better response
from the “circularity” operator. Figure 2 shows the procedure
to evaluate a candidate solution 𝐶 with its representation as
a virtual shape 𝐻. Figure 2(a) shows the original edge map,
while Figure 2(b) presents the virtual shape 𝐻 representing
the particle 𝐶 = {𝑝𝑒1 , 𝑝𝑒2 , 𝑝𝑒3}. In Figure 2(c), the virtual
shape𝐻 is compared to the original image, point by point, in
order to find coincidences between virtual and edge points.
The 𝑝 individual has been built from points 𝑝𝑒1 , 𝑝𝑒2 , and
𝑝𝑒3 which are shown in Figure 2(a). The virtual shape 𝐻,
obtained by MCA, gathers 56 points (𝑁𝑠 = 56) with only
18 of them existing in both images (shown as blue points
plus red points in Figure 2(c)) and yielding;∑𝑁𝑠

ℎ=1
𝐸(ℎ𝑣) = 18;

therefore 𝐽(𝐶) ≈ 0.67.

3.4. EMO Implementation. The implementation of the pro-
posed algorithm can be summarized into the following steps.

Step 1. The Canny filter is applied to find the edges and store
them in the 𝑃 = {𝑝1, 𝑝2, . . . , 𝑝𝑁𝑝} vector. The index 𝑘 is set to
1.

Step 2. 𝑚 initial particles are generated (𝐶𝑎,1, 𝑎 ∈ [1,𝑚]).
Particles belonging to a seriously small or to a quite big radius
are eliminated (collinear points are discarded).

Step 3. The objective function 𝐽(𝐶𝑎,𝑘) is evaluated to deter-
mine the best particle 𝐶𝐵 (where 𝐶𝐵 ← arg min{𝐽(𝐶𝑎,𝑘)}).

Step 4. The charge between particles is calculated using
expression (3), and its vector force is calculated through (4)
and (5). The particle with a better objective function holds a
bigger charge and therefore a bigger attraction force.

(a)

(b)

(c)

Figure 2: Procedure to evaluate the objective function 𝐽(𝐶). The
image shown by (a) presents the original edge image while (b)
portraits the virtual shape 𝐻 corresponding to 𝐶. The image in (c)
shows coincidences between both images through blue or red pixels
while the virtual shape is also depicted in green.

Step 5. The particles are moved according to their force
magnitude. The new particle’s position 𝐶𝑦

𝑎
is calculated by

expression (6). 𝐶𝐵 is not moved because it has the biggest
force and it attracts other particles to itself.

Step 6. For each 𝐶𝑦
𝑎
, a maximum of 𝐼𝑙 points are generated at

each coordinate direction in the 𝛿 neighborhood of 𝐶𝑦
𝑎
. The

process of generating local points is continued for each 𝐶𝑦
𝑎

until either a better 𝐶𝑧
𝑎
is found or the 𝑛 × 𝐼𝑙 trial is reached.

Step 7. The new particles 𝐶𝑎,𝑘+1 are selected from 𝐶𝑦
𝑎
and 𝐶𝑧

𝑎

using (1).
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Repelled

Attracted

Figure 3: An analogy to the Coulomb’s law.

Step 8. The 𝑘 index is increased. If 𝑘 = 𝑀𝐴𝑋𝐼𝑇𝐸𝑅 or if
𝐽(𝐶𝑎,𝑘) value is as smaller as the predefined threshold value,
then the algorithm is stopped and the flow jumps to Step 9.
Otherwise, it jumps to Step 3.

Step 9. The best 𝐶𝐵 particle is selected from the last iteration.

Step 10. From the original edge map, the algorithm marks
points corresponding to 𝐶𝐵. In case of multicircle detection,
it jumps to Step 2.

Step 11. Finally, the best particle 𝐶𝐵
𝑁𝑐

from each circle is
used to draw (over the original image) the detected circles,
considering𝑁𝑐 as the number of detected circles.

Figure 3 shows an analogy to Coulomb’s law.The original
figures to be detected are represented by a solid black line
while the shapes with discontinuous gray lines represent the
candidate circles. Since the candidate circles 𝐶1,𝑘 and 𝐶3,𝑘
present a high value in the fitness function 𝐽(𝐶𝑎,𝑘), they are
repelled (blue lines), moving away the shapes. In contrast,
the circle candidate 𝐶2,𝑘 that holds a small value of 𝐽(𝐶𝑎,𝑘)
is attracted (red line) to the circular shape contained in the
image.

4. The White Blood Cell Detector

In order to detect WBC, the proposed detector combines the
EMO-based circle detector presented in Section 3 with a new
objective function.

4.1. Image Preprocessing. To employ the proposed detector,
smear images must be preprocessed to obtain two new
images: the segmented image and its corresponding edge
map.The segmented image is produced by using a segmenta-
tion strategy whereas the edge map is generated by a border
extractor algorithm. Both images are considered by the new
objective function to measure the resemblance of a candidate
circle with an actual WBC.

The goal of the segmentation strategy is to isolate the
white blood cells (WBCs) from other structures such as

red blood cells and background pixels. Information of color,
brightness, and gradients is commonly used within a thresh-
olding scheme to generate the labels to classify each pixel.
Although a simple histogram thresholding can be used to
segment the WBCs, in this work, the diffused expectation-
maximization (DEM) has been used to assure better results
[23].

DEM is an expectation-maximization- (EM-) based algo-
rithm which has been used to segment complex medical
images [24]. In contrast to classical EM algorithms, DEM
considers the spatial correlations among pixels as a part of
the minimization criteria. Such adaptation allows to segment
objects in spite of noisy and complex conditions.

For the WBCs segmentation, the DEM has been config-
ured considering three different classes (𝐾 = 3), 𝑔(∇ℎ𝑖𝑘) =

|∇ℎ𝑖𝑘|
−9/5, 𝜆 = 0.1, and 𝑚 = 10 iterations. These values

have been found as the best configuration set according to
[23]. As a final result of the DEM operation, three different
thresholding points are obtained: the first corresponds to the
WBCs, the second to the red blood cells, whereas the third
represents the pixels classified as background. Figure 4(b)
presents the segmentation results obtained by the DEM
approach employed at this work considering Figure 4(a) as
the original image.

Once the segmented image has been produced, the edge
map is computed. The purpose of the edge map is to obtain a
simple image representation that preserves object structures.
Optimization-based circle detectors [17–20] operate directly
over the edge map in order to recognize circular shapes.
Several algorithms can be used to extract the edge map;
however, in this work, the morphological edge detection
procedure [25] has been used to accomplish such a task.
Morphological edge detection is a traditional method to
extract borders from binary images in which original images
(𝐼𝐵) are eroded by a simple structure element (𝐼𝐸). Then, the
eroded image is inverted (𝐼𝐸) and compared with the original
image (𝐼𝐸 ∧ 𝐼𝐵) in order to detect pixels which are present in
both images. Such pixels compose the computed edge map
from 𝐼𝐵. Figure 4(c) shows the edge map obtained by using
the morphological edge detection procedure.

Other example is presented in Figure 8. It represents a
complex example with an image showing seriously deformed
cells. Despite such imperfections, the proposed approach can
effectively detect the cells as it is shown in Figure 8(d).

4.2. The Modified EMO-Based Circle Detector. The circle
detection approach uses the encoding of three edge points
that represent candidate circles in the image. In the original
EMO-based circle detector, the quality of each individual is
calculated by using an objective function which evaluates the
existence of a candidate circle considering only information
from the edge map (shape structures). The better a candidate
circle approximates the actual edge-circle, themore the objec-
tive function value decreases.Therefore, the detection perfor-
mance depends on the quality of the edgemap that is obtained
from the original images. However, since smear images
present different imaging conditions and staining intensities,
they produce edge maps partially damaged by noisy pixels.
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(a) (b)

(c)

Figure 4: Preprocessing process: (a) original smear image, (b) segmented image obtained by DEM, and (c) the edge map obtained by using
the morphological edge detection procedure.

Under such conditions, the use of the EMO-based circle
detector cannot be directly applied to WBC detection.

In order to use the EMO-based circle detector within
the context of WBC detection, it is necessary to change the
fitness function presented in (11). In thiswork, a newobjective
function has been derived to measure the resemblance of a
candidate circle to an actual WBC based on the information
from the edge map and the segmented image. Such new
objective function takes into consideration not only the infor-
mation provided by the edge map but also the relationship
among the pixels falling inside the candidate circle which is
contained in the segmented image, validating the existence
of the WBC. This new function 𝐽(𝐶) is thus calculated as
follows:

𝐽New (𝐶) = 2 −
∑
𝑁𝑠

𝑣=1
𝐸 (ℎ𝑣)

𝑁𝑠
−
𝑊𝑝

𝐵𝑝
, (14)

where ℎ𝑣 and 𝑁𝑠 keep the same meaning than (11) and 𝑊𝑝

is the amount of white pixel falling inside the candidate
circle represented by 𝐶. Likewise, 𝐵𝑝 corresponds to the total
number of black pixels falling inside 𝐶.

To illustrate the functionality of the new objective func-
tion, Figure 5 presents a detection procedure which considers
a complex image. Figure 5(a) shows the original smear image
containing a WBC and a stain produced by the coloring
process. Figures 5(b) and 5(c) represent the segmented image
and the edge map, respectively. Since the stain contained
in the smear image (Figure 5(a)) possesses similar proper-
ties than a WBC, it remains as a part of the segmented

image (Figure 5(b)) and the edge map (Figure 5(c)). Such
an inconsistency produces big detection errors in case the
EMO-based circle detector is used without modification.
Figure 5(d) presents detection results obtained by the original
EMO-based circle detector. As the original objective function
considers only the number of coincidences between the
candidate circle and the edge map, circle candidates that
match with a higher number of edge pixels are chosen as
the best circle instances. In Figure 5(d), the detected circle
presents a coincidence of 37 different pixels in the edge map.
Such coincidence is considered as the best possible under
the restrictions of the original objective function. On the
other hand, when the modified objective function is used in
the recognition procedure, the accuracy and the robustness
of the detection are both significantly improved. By using
the new objective function, information from the segmented
image is employed to refine the solution that is provided
by coincidences with the edge map. Figure 5(e) presents the
detection result that has been produced by the modified
EMO-based circle detector. In the figure, the detected circle
matches with only 32 pixels of the edge map. However, it is
considered as the best instance due to the relationship of its
internal pixels (the white pixels aremuchmore than the black
pixels). Finally, Figure 5(f) shows final detection results over
the original smear image.

Table 1 presents the parameters for the EMO algorithm
used in this work.They have been kept for all test images after
being experimentally defined.
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(a) (b) (c)

(d) (e) (f)

Figure 5:WBC detection procedure. (a) Smear image. (b) Segmented image. (c) Edge map. (d) Detected circle by using the original objective
function. Red points show the coincidences between the candidate circle and the edge map. (e) Detected circle by using the new objective
function. Yellow points represent the edge pixels without coincidence. (f) Final result.

Table 1: EMO parameters used for leukocytes detection in medical
images.
𝑚 𝑛 𝑀𝐴𝑋𝐼𝑇𝐸𝑅 𝛿 𝐿𝐼𝑆𝑇𝐸𝑅

50 3 5 4 4

Under such assumptions, the complete process to detect
WBCs is implemented as follows.

Step 1. Segment the WBCs using the DEM algorithm.

Step 2. Get the edge map from the segmented image by using
the morphological edge detection method.

Step 3. Start the circle detector based on EMO over the edge
map while saving best circles (Section 3.3).

Step 4. Define parameter values for each circle that identify
the WBCs.

4.3. Numerical Example. In order to present the algorithm’s
step-by-step operation, a numerical example has been set by
applying the proposed method to detect a single leukocyte
lying inside of a simple image. Figure 6(a) shows the image
used in the example. After applying the threshold operation,
theWBC is located besides few other pixels which are merely
noise (see Figure 6(b)). Then, the edge map is subsequently
computed and stored pixel by pixel inside the vector 𝑃.
Figure 6(c) shows the resulting image after such procedure.

The EMO-based circle detector is executed using infor-
mation of the edge map and the segmented image (for the
sake of easiness, it only considers a population of three parti-
cles). Like all evolutionary approaches, EMO is a population-
based optimizer that attacks the starting point problem by

sampling the search space at multiple, randomly chosen,
initial particles. By taking three random pixels from vector 𝑃,
three different particles are constructed. Figure 6(d) depicts
the initial particle distribution. Since the particle 𝐶2,0 holds
the best fitness value 𝐽New(𝐶2,0) (it does possess a better
coincidence with the edge map and a god pixel relationship),
it is considered as the best particle 𝐶𝐵. Then, the charge of
each particle is calculated through (3), and the forces exerted
over each particle are computed. Figure 6(e) shows the forces
exerted over the 𝐶3,0 particle. Since the 𝐶3,0 particle is the
worst particle in terms of fitness value, it is attracted by
particles 𝐶1,0 and 𝐶2,0. 𝐹3,1 and 𝐹3,2 represent the existent
attracting forces of 𝐶3,0 with respect to 𝐶1,0 and 𝐶2,0 whereas
𝐹3 corresponds to the resultant force. Considering 𝐹3 as the
final force exerted over 𝐶3,0, the position of 𝐶3,0 is modified
using (6). Figure 6(f) depicts the new position𝐶3,1 of particle
𝐶3,0 (the second subindex means the iteration number). If
the same procedure is applied over all the particles (except
for 𝐶2,0 which is the best particle), it yields positions shown
in Figure 6(g). Therefore, after 20 iterations, all particles
converge to the same position presented in Figure 6(h)
whereas Figure 6(i) depicts the final result.

5. Experimental Results

Experimental tests have been developed in order to evaluate
the performance of the WBC detector. It was tested over
microscope images from blood smears holding a 600 × 500

pixel resolution. They correspond to supporting images on
the leukemia diagnosis. The images show several complex
conditions such as deformed cells and overlapping with
partial occlusions. The robustness of the algorithm has been
tested under such demanding conditions.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6: Detection numerical example: (a) The image used as example. (b) Segmented image. (c) Edge map. (d) Initial particles. (e) Forces
exerted over 𝐶3,0. (f) New position of 𝐶3,0. (g) Positions of all particles after the first generation. (h) Final particle configuration after 20
generations. (i) Final result overlapped the original image.

Figure 7(a) shows an example image employed in the
test. It was used as input image for the WBC detector.
Figure 7(b) presents the segmented WBCs obtained by the
DEM algorithm. Figures 7(c) and 7(d) present the edge
map and the white blood cells after detection, respectively.
The results show that the proposed algorithm can effec-
tively detect and mark blood cells despite cell occlusion,
deformation or overlapping. Other parameters may also be
calculated through the algorithm: the total area covered
by white blood cells and relationships between several cell
sizes.

6. Comparisons to Other Methods

Acomprehensive set of smear-blood test images is used to test
the performance of the proposed approach. We have applied
the proposed EMO-based detector to test images in order to
compare its performance to otherWBC detection algorithms
such as the boundary support vectors (BSVs) approach [2],
the iterative Otsu (IO) method [3], the Wang algorithm [4],
and the Genetic algorithm-based (GAB) detector [17]. In all
cases, the algorithms are tuned according to the value set
which is originally proposed by their own references.

6.1. Detection Comparison. To evaluate the detection per-
formance of the proposed detection method, Table 2 tab-
ulates the comparative leukocyte detection performance of
the BSV approach, the IO method, the Wang algorithm,
the BGA detector and the proposed method, in terms of
detection rates and false alarms. The experimental data set
includes 30 images which are collected from the Cellavision
reference library (http://www.cellavision.com). Such images
contain 426 leukocytes (222 bright leukocytes and 204 dark
leukocytes according to smear conditions) which have been
detected and counted by a human expert. Such values act as
ground truth for all the experiments. For the comparison,
the detection rate (DR) is defined as the ratio between the
number of leukocytes correctly detected and the number
of leukocytes determined by the expert. The false alarm
rate (FAR) is defined as the ratio between the number of
nonleukocyte objects that have been wrongly identified as
leukocytes and the number leukocytes which have been
actually determined by the expert.

Experimental results show that the proposed EMO
method, which achieves 96.48% leukocyte detection accu-
racy with 3.75% false alarm rate, is compared favorably
against other WBC detection algorithms, such as the BSV

http://www.cellavision.com
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(a) (b)

(c) (d)

Figure 7: Resulting images of the first test after applying the WBC detector: (a) original image, (b) image segmented by the DEM algorithm,
(c) edge map, and (d) the white detected blood cells.

approach, the IO method, the Wang algorithm, and the BGA
detector.

6.2. Robustness Comparison. Images of blood smear are often
deteriorated by noise due to various sources of interference
and other phenomena that affect the measurement processes
in imaging and data acquisition systems. Therefore, the
detection results depend on the algorithm’s ability to cope
with different kinds of noises. In order to demonstrate
the robustness in the WBC detection, the proposed EMO
approach is compared to the BSV approach, the IO method,
the Wang algorithm and the BGA detector under noisy
environments. In the test, two different experiments have
been studied. The first inquest explores the performance
of each algorithm when the detection task is accomplished
over images corrupted by salt and pepper noise. The second
experiment considers images polluted by Gaussian noise. Salt
and Pepper andGaussian noise are selected for the robustness
analysis because they represent the most compatible noise
types commonly found in images of blood smear [26].
The comparison considers the complete set of 30 images
presented in Section 6.1 containing 426 leukocytes which
have been detected and counted by a human expert. The
added noise is produced by MatLab, considering two noise
levels of 5% and 10% for salt and pepper noise whereas 𝜎 = 5

and 𝜎 = 10 are used for the case of Gaussian noise.
Figure 9 shows only two images with different noise types as
example. The outcomes in terms of the detection rate (DR)
and the false alarm rate (FAR) are reported for each noise
type in Tables 3 and 4. The results show that the proposed
EMO algorithm presents the best detection performance,
achieving in the worst case a DR of 87.79% and 89.20%, under
contaminated conditions of salt and pepper and Gaussian
noise, respectively. On the other hand, the EMO detector
possesses the least degradation performance presenting a
FAR value of 8.21% and 7.51%.

6.3. Stability Comparison. In order to compare the stability
performance of the proposed method, its results are com-
pared to those reported by Wang et al. in [4] which is
considered as an accurate technique for the detection of
WBC.

The Wang algorithm is an energy-minimizing method
which is guided by internal constraint elements and influ-
enced by external image forces, producing the segmentation
of WBCs at a closed contour. As external forces, the Wang
approach uses edge information which is usually represented
by the gradient magnitude of the image. Therefore, the
contour is attracted to pixels with large image gradients, that
is, strong edges. At each iteration, the Wang method finds
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(a) (b)

(c) (d)

Figure 8: Resulting images of the second test after applying theWBCdetector: (a) original image, (b) image segmented by theDEMalgorithm,
(c) edge map, and (d) the white detected blood cells.

(a) (b)

Figure 9: Examples of images included in the experimental set for robustness comparison. (a) Image contaminated with 10% of salt and
pepper noise and (b) image polluted with 𝜎 = 10 of Gaussian noise.

a new contour configurationwhichminimizes the energy that
corresponds to external forces and constraint elements.

In the comparison, the net structure and its operational
parameters, corresponding to theWang algorithm, follow the
configuration suggested in [4] while the parameters for the
EMO algorithm are taken from Table 1.

Figure 10 shows the performance of both methods con-
sidering a test image with only two white blood cells. Since
the Wang method uses gradient information in order to
appropriately find a new contour configuration, it needs to be
executed iteratively in order to detect each structure (WBC).
Figure 10(b) shows the results after the Wang approach has
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Table 2: Comparative leukocyte detection performance of the BSV approach, the IO method, the Wang algorithm, the BGA detector, and
the proposed EMOmethod over the data set which contains 30 images and 426 leukocytes.

Leukocyte type Method Leukocytes detected Missing False alarms DR FAR

Bright leukocytes (222)

BSV 104 118 67 46.85% 30.18%
IO 175 47 55 78.83% 24.77%

Wang 186 36 42 83.78% 18.92%
BGA 177 45 22 79.73% 9.91%
EMO 211 11 10 95.04% 4.50%

Dark leukocytes (204)

BSV 98 106 54 48.04% 26.47%
IO 166 38 49 81.37% 24.02%

Wang 181 23 38 88.72% 18.63%
BGA 170 34 19 83.33% 9.31%
EMO 200 4 6 98.04% 2.94%

Overall (426)

BSV 202 224 121 47.42% 28.40%
IO 341 85 104 80.05% 24.41%

Wang 367 59 80 86.15% 18.78%
BGA 347 79 41 81.45% 9.62%
EMO 411 15 16 96.48% 3.75%

Table 3: Comparative WBC detection among methods that considers the complete data set of 30 images corrupted by different levels of salt
and pepper noise.

Noise level Method Leukocytes detected Missing False alarms DR FAR

5% salt and pepper
noise
426 leukocytes

BSV 148 278 114 34.74% 26.76%
IO 270 156 106 63.38% 24.88%

Wang 250 176 118 58.68% 27.70%
BGA 306 120 103 71.83% 24.18%
EMO 390 36 30 91.55% 7.04%

10% salt and pepper
noise
426 leukocytes

BSV 101 325 120 23.71% 28.17%
IO 240 186 78 56.34% 18.31%

Wang 184 242 123 43.19% 28.87%
BGA 294 132 83 69.01% 19.48%
EMO 374 52 35 87.79% 8.21%

been applied considering only 200 iterations. Furthermore,
Figure 10(c) shows results after applying the EMO method
which has been proposed in this paper.

The Wang algorithm uses the fuzzy cellular neural
network (FCNN) as an optimization approach. It employs
gradient information and internal states in order to find a
better contour configuration. In each iteration, the FCNN
tries, as contour points, different new pixel positions which
must be located nearby the original contour position. Such
fact might cause the contour solution to remain trapped into
a local minimum. In order to avoid such a problem, theWang
method applies a considerable number of iterations so that a
near optimal contour configuration can be found. However,
when the number of iterations increases, the possibility to
cover other structures increases too. Thus, if the image has
a complex background (as smear images), the method gets
confused so that finding the correct contour configuration
from the gradient magnitude is not easy. Therefore, a draw-
back of Wang’s method is related to its optimal iteration
number (instability). Such number must be determined
experimentally as it depends on the image context and its

complexity. Figure 11(a) shows the result of applying 400
cycles of Wang’s algorithm while Figure 11(b) presents the
detection of the same cell shapes after 1000 iterations using
the proposed algorithm. From Figure 11(a), it can be seen that
the contour produced byWang’s algorithm degenerates as the
iteration process continues, wrongly covering other shapes
lying nearby.

In order to compare the accuracy of both methods, the
estimated WBC area, which has been approximated by both
approaches, is compared to the actual WBC size considering
different degrees of evolution, that is, the cycle number
for each algorithm. The comparison acknowledges only one
WBC because it is the only detected shape inWang’s method.
Table 5 shows the averaged results over twenty repetitions for
each experiment.

7. Conclusions

This paper has presented an algorithm for the automatic
detection of white blood cells that are embedded into compli-
cated and cluttered smear images by considering the complete
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Table 4: Comparative WBC detection among methods that considers the complete data set of 30 images corrupted by different levels of
Gaussian noise.

Noise level Method Leukocytes detected Missing False alarms DR FAR

𝜎 = 5 Gaussian noise
426 Leukocytes

BSV 172 254 77 40.37% 18.07%
IO 309 117 71 72.53% 16.67%

Wang 301 125 65 70.66% 15.26%
BGA 345 81 61 80.98% 14.32%
EMO 397 29 21 93.19% 4.93%

𝜎 = 10 Gaussian noise
426 Leukocytes

BSV 143 283 106 33.57% 24.88%
IO 281 145 89 65.96% 20.89%

Wang 264 162 102 61.97% 23.94%
BGA 308 118 85 72.30% 19.95%
EMO 380 46 32 89.20% 7.51%

(a) (b)

(c)

Figure 10: Comparison of the EMO and Wang’s method for white blood cell detection in medical images. (a) Original image. (b) Detection
using the Wang’s method. (c) Detection after applying the EMOmethod.

process as a circle detection problem. The approach is based
on a nature-inspired technique called the electromagnetism-
like optimization (EMO) which is a heuristic method that
follows electromagnetism principles for solving complex
optimization problems.The EMO algorithm is based on elec-
tromagnetic attraction and repulsion forces among charged
particles whose charge represents the fitness solution for each
particle (a given solution). The algorithm uses the encoding
of three noncollinear edge points as candidate circles over
an edge map. A new objective function has been derived to

measure the resemblance of a candidate circle to an actual
WBC based on the information from the edge map and
segmentation results. Guided by the values of such objective
function, the set of encoded candidate circles (charged
particles) are evolved by using the EMO algorithm so that
they can fit into the actual blood cells that are contained in
the edge map.

The performance of the EMO-method has been com-
pared to other existingWBCdetectors (the boundary support
vectors (BSV) approach [2], the iterative Otsu (IO) method
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(a) (b)

Figure 11: Result comparison for the white blood cells detection showing (a)Wang’s algorithm after 400 cycles and (b) EMOdetector method
considering 1000 cycles.

Table 5: Error in cell’s size estimation after applying the EMO
algorithm and theWang’s method to detect one leukocite embedded
into a blood-smear image. The error is averaged over twenty
experiments.

Algorithm Iterations Error %

Wang
60 70%
200 1%
400 121%

EMO proposed
60 8.22%
200 10.1%
400 10.8%

[3], the Wang algorithm [4], and the Genetic algorithm-
based (GAB) detector [19]) considering several images which
exhibit different complexity levels. Experimental results
demonstrate the high performance of the proposed method
in terms of detection accuracy, robustness, and stability.
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